La memoria es uno de los principales recursos de la computadora, la cual debe de administrarse con mucho cuidado. Aunque actualmente la mayoría de los sistemas de cómputo cuentan con una alta capacidad de memoria, de igual manera las aplicaciones actuales tienen también altos requerimientos de memoria, lo que sigue generando escasez de memoria en los sistemas multitarea y/o multiusuario.
La parte del sistema operativo que administra la memoria se llama administrador de memoria y su labor consiste en llevar un registro de las partes de memoria que se estén utilizando y aquellas que no, con el fin de asignar espacio en memoria a los procesos
4.1.1 ORGANIZACION DE MEMORIA
En primer lugar tenemos que distinguir claramente entre tres tipos de memoria:
Una: la memoria EEPROM donde almacenaremos el programa que haremos, esta memoria solo podrá ser leida por el pic (el pic va leyendo las instrucciones del programa almacenado en esta memoria y las va ejecutando). Al apagar el pic esta memoria no se borra. Dos: la memoria RAM en cuyos registros se irán almacenando los valores de las variables que nosotros queramos y cuando nosotros queramos (por programa), al apagar el pic esta memoria se borra. Tres: la memoria EEPROM para datos, es un espacio de memoria EEPROM en la que se pueden guardar variables que queremos conservar aunque se apague el pic. No se tratará aquí por ser una memoria mas difícil de emplear.
4.1.2 ADMINISTRADOR DE LA MEMORIA
El Administrador De Memoria se refiere a los distintos métodos y operaciones que se encargan de obtener la máxima utilidad de la memoria, organizando los procesos y programas que se ejecutan de manera tal que se aproveche de la mejor manera posible el espacio disponible. Para poder lograrlo, la operación principal que realiza es la de trasladar la información que deberá ser ejecutada por el procesador, a la memoria principal. Actualmente esta administración se conoce como Memoria Virtual ya que no es la memoria física del procesador sino una memoria virtual que la representa. Entre algunas ventajas, esta memoria permite que el sistema cuente
4.1.3 JERARQUIA DE LA MEMORIA
Se conoce como jerarquía de memoria a la organización piramidal de la memoria en niveles, que tienen los ordenadores. Su objetivo es conseguir el rendimiento de una memoria de gran velocidad al coste de una memoria de baja velocidad, basándose en el principio de cercanía de referencias.
Los puntos básicos relacionados con la memoria pueden resumirse en:
* Cantidad * Velocidad * Coste
La cuestión de la cantidad es simple, cuanto más memoria haya disponible, más podrá utilizarse. La velocidad óptima para la memoria es la velocidad a la que el procesador puede trabajar, de modo que no haya tiempos de espera entre cálculo y cálculo, utilizados para traer operandos o guardar resultados.
4.1.4 ESTRATEGIAS DE ADMINISTRACION DE MEMORIA
La memoria principal puede ser considerada como un arreglo lineal de localidades de almacenamiento de un byte de tamaño. Cada localidad de almacenamiento tiene asignada una dirección que la identifica.
POLITICAS Y FILOSOFIA DE LA ADMINISTRACION DE LA MEMORIA.
La memoria principal es el lugar donde el CPU lee las instrucciones a ejecutar, asi como algunos datos a emplear.
Una de las funciones básicas que debe implementar un SO es la Administración de la Memoria para tener un control sobre los lugares donde están almacenados los procesos y datos que actualmente se están utilizando.
Existen 3 mecanismos de Asignación:
1. ASIGNACIÓN DE UNA PARTICIÓN. En la memoria se considera la existencia de una sola partición, esto es, se tiene la capacidad de ejecutar un proceso. La partición es toda la memoria, cuya administración corre por cuenta del usuario, o sea, no hay un sistema operativo.
2. ASIGNACIÓN DE DOS PARTICIONES. La memoria se divide en 2 bloques. En una partición se carga el Sistema Operativo y en la otra el programa del usuario. Es el concepto de Sistema Operativo Monousuario.
3. ASIGNACIÓN DE MULTIPLES PARTICIONES. La memoria es dividida en varias particiones una para el Sistema Operativo y las demás para los procesos de usuarios u otras funciones especiales del Sistema Operativo. Este es el concepto teórico de asignación de memoria en los Sistemas Operativos de Multiparticiones y de Multitarea..
4.1.5 PARTICIONES FIJAS Y VARIABLES
Una vez implementada la partición, hay dos maneras de asignar los procesos a ella. La primera es mediante el uso de una cola única que asigna los procesos a los espacios disponibles de la memoria conforme se vayan desocupando. El tamaño del hueco de memoria disponible es usado para localizar en la cola el primer proceso que quepa en él. Otra forma de asignación es buscar en la cola el proceso de tamaño mayor que se ajuste al hueco, sin embargo hay que tomar en cuenta que tal método discrimina a los procesos más pequeños. Dicho problema podría tener solución si se asigna una partición pequeña en la memoria al momento de hacer la partición inicial, el cual sería exclusivo para procesos pequeños.
Esta idea nos lleva a la implementación de otro método para particiones fijas, que es el uso de diferentes colas independientes exclusivas para cierto rango en el tamaño de los procesos. De esta manera al llegar un proceso, éste sería asignado a la cola de tamaño más pequeño que la pueda aceptar. La desventaja en esta organización es que si una de las colas tiene una larga lista de procesos en espera, mientras otra cola esta vacía, el sector de memoria asignado para ese tamaño de procesos estaría desperdiciándose.
4.2 MEMORIA REAL
4.2.1 MEMORIA BITS
Este tipo de administración divide la memoria en unidades de asignación, las cuales pueden ser tan pequeñas como unas cuantas palabras o tan grandes como varios kilobytes. corresponde un bit en el mapa de bits, el cual toma el valor de 0 si la unidad está libre y 1 si está ocupada (o viceversa). Un mapa de bits es una forma sencilla para llevar un registro de las palabras de la memoria en una cantidad fija de memoria, puesto que el tamaño del mapa sólo depende del tamaño de la memoria y el tamaño de la unidad de asignación.
4.2.2 LISTAS ENLAZADAS
Mantiene una lista enlazada de segmentos de memoria asignados y libres, donde un segmento es un proceso o un hueco entre dos procesos.
•Si la lista se ordena por dirección es más fácil su actualización.
•Si hay dos listas, una para memoria usada y otra para huecos, la asignación es más rápida, pero la liberación es más lenta
•Ocurre lo mismo para asignar hueco de intercambio.
4.2.3 DISTRIBUCION DE ESPACIO
En algunos sistemas, cuando un proceso esta en la memoria, no se le puede asignar espacio en disco.cuando deba intercambiarse, puede colocarse en alguna otra parte del disco.los algoritmos para administrar el espacio de intercambio son los mismos que se emplean para administrar la memoria principal.
En otros sistemas,cuando se crea un proceso,el espacio para intercambio se asigna para el en disco. Cada ves que el proceso se intercambia, siempre se cambia a su espacio asignado, en lugar de dirigirse a un lugar diferente en cada ocacion. Cuando el proceso sale, se desasigna el espacio para el intercambio.
4.3 MEMORIA VIRTUAL
Cómo la memoria virtual se mapea a la memoria físicaLa Memoria virtual es un concepto que permite al software usar más memoria principal que la que realmente posee el ordenador. La mayoría de los ordenadores tienen cuatro tipos de memoria: registros en la CPU, la memoria cache (tanto dentro como fuera del CPU), la memoria física (generalmente en forma de RAM, donde la CPU puede escribir y leer directa y razonablemente rápido) y el disco duro que es mucho más lento, pero también más grande y barato.
4.3.1 PAGINACION DE MEMORIA VIRTUAL
l único inconveniente del sistema de paginación pura es que todas las páginas de un proceso deben estar en memoria para que pueda ejecutar. Esto hace que si los programas son de tamaño considerable, no puedan cargarse muchos a la vez, disminuyendo el grado de multiprogramación del sistema. Para evitar esto, y aprovechando el principio de cercanía de referencias donde se puede esperar que un programa trabaje con un conjunto cercano de referencias a memoria (es decir con un conjunto residente más pequeño que el total de sus páginas), se permitirá que algunas páginas del proceso sean guardadas en un espacio de intercambio (en memoria secundaria) mientras no se necesiten.
Cuando la paginación se utiliza junto con memoria virtual, el sistema operativo mantiene además el conocimiento sobre qué páginas están en memoria principal y cuáles no, usando la tabla de paginación. Si una página buscada está marcada como no disponible (tal vez porque no está presente en la memoria física, pero sí en el área de intercambio), cuando la CPU intenta referenciar una dirección de memoria en esa página, la MMU responde levantando una excepción (comúnmente llamada fallo de página
4.3.2 SEGMENTACION DE MEMORIA VIRTUAL
. Modularidad de programas: cada rutina del programa puede ser un bloque sujeto a cambios y recopilaciones, sin afectar por ello al resto del programa.
2. Estructuras de datos de largo variable: ejm. Stack, donde cada estructura tiene su propio tamaño y este puede variar.
3. Protección: se puede proteger los módulos del segmento contra accesos no autorizados.
4. Comparición: dos o más procesos pueden ser un mismo segmento, bajo reglas de protección; aunque no sean propietarios de los mismos.
5. Enlace dinámico entre segmentos: puede evitarse realizar todo el proceso de enlace antes de comenzar a ejecutar un programa. Los enlaces se establecerán solo cuando sea necesario.
2. Estructuras de datos de largo variable: ejm. Stack, donde cada estructura tiene su propio tamaño y este puede variar.
3. Protección: se puede proteger los módulos del segmento contra accesos no autorizados.
4. Comparición: dos o más procesos pueden ser un mismo segmento, bajo reglas de protección; aunque no sean propietarios de los mismos.
5. Enlace dinámico entre segmentos: puede evitarse realizar todo el proceso de enlace antes de comenzar a ejecutar un programa. Los enlaces se establecerán solo cuando sea necesario.
Ventajas de la segmentación El esquema de segmentación ofrece las siguientes ventajas: El programador puede conocer las unidades lógicas de su programa, dándoles un tratamiento particular.
* Es posible compilar módulos separados como segmentos el enlace entre los segmentos puede suponer hasta tanto se haga una referencia entre segmentos.
* Debido a que es posible separar los módulos se hace más fácil la modificación de los mismos. Cambios dentro de un modulo no afecta al resto de los módulos.
* Es fácil el compartir segmentos.
* Es posible que los segmentos crezcan dinámicamente según las necesidades del programa en ejecución.
* Existe la posibilidad de definir segmentos que aun no existan.
Así, no se asignara memoria, sino a partir del momento que sea necesario hacer usos del segmento. Un ejemplo de esto, serian los arreglos cuya dimensión no se conoce hasta tanto no se comienza a ejecutar el programa. En algunos casos, incluso podría retardar la asignación de memoria hasta el momento en el cual se referencia el arreglo u otra estructura de dato por primera vez.* Es posible compilar módulos separados como segmentos el enlace entre los segmentos puede suponer hasta tanto se haga una referencia entre segmentos.
* Debido a que es posible separar los módulos se hace más fácil la modificación de los mismos. Cambios dentro de un modulo no afecta al resto de los módulos.
* Es fácil el compartir segmentos.
* Es posible que los segmentos crezcan dinámicamente según las necesidades del programa en ejecución.
* Existe la posibilidad de definir segmentos que aun no existan.
4.3.3 ALGORITMOS DE SUSTITUCION DE PAGINA
Cuando ocurre una falla de página, el sistema operativo tiene que escoger la página que sacará de la memoria para que pueda entrar la nueva página. Si la página que se eliminará fue modificada mientras estaba en la memoria, se debe reescribir en el disco a fin de actualizar la copia del disco, pero si no fue así (p. ej., si la página contenía texto de programa), la copia en disco ya estará actualizada y no será necesario reescribirla. La nueva página simplemente sobreescribe la que está siendo desalojada.
4.3.4 DISEÑO PARA EL SISTEMA
Cuando ocurre una falla de página, el sistema operativo tiene que escoger la página que sacará de la memoria para que pueda entrar la nueva página. Si la página que se eliminará fue modificada mientras estaba en la memoria, se debe reescribir en el disco a fin de actualizar la copia del disco, pero si no fue así (p. ej., si la página contenía texto de programa), la copia en disco ya estará actualizada y no será necesario reescribirla. La nueva página simplemente sobreescribe la que está siendo desalojada.
4.3.4 LIBERACION DE PAGINAS
Un proceso usuario puede emitir una “liberación voluntaria de página” para liberar el marco de página cuando ya no necesitara esa página [7, Deitel].
Se puede eliminar el “desperdicio” y acelerar la ejecución.
El inconveniente es que la incorporación de mandatos de liberación de páginas dentro de los programas de usuarios puede ser peligroso y retrasar el desarrollo de aplicaciones.
“Los compiladores y S. O. deberían detectar automáticamente situaciones de liberación de página mucho antes de lo que es posible con estrategias de conjuntos de trabajo”.
No hay comentarios:
Publicar un comentario